
SELF-SIMILAR SOLUTION OF THE PROBLEM OF THE HYDRODYNAMICS OF 

NONLINEAR VISCOUS FLUIDS 

K. B. Pavlov UDC 532.516 

The laminar mixing of two parallel streams of a dilatant fluid is discussed. It 
is shown that the solution of this problem given in [i] contains a fundamental 
error resulting from ignoring the spatial localization of the mixing zone of the 
streams. 

In the boundary-layer theory of non-Newtonian nonlinear viscous media there is a known 
solution of the problem of the mixing of two uniform laminar streams of a fluid whose theo- 
logical behavior is described by a power law 

Here oij is the stress tensor deviator, fij is the rate of strain tensor, and k and n 
are rheological constants of the fluid. According to accepted terminology, fluids with 
n > I are called dilatant, those with n < 1 pseudoplastic, and the case n = i corresponds 
to a viscous (Newtonian) fluid. 

The numerical solution of the problem of the mixing of laminar streams of a power-law 
fluid is given in [i], but this treatment cannot be considered exhaustive since the charac- 
teristics of the structure of the mixing zone in dilatant fluids were undetected. 

It is natural to expect a mixing zone for dilatant fluids which is strictly localized 
in space. This is related to the fact that shear perturbations are propagated with a finite 
velocity in dilatant fluids [2, 3]. Because of the motion of the medium in the direction 
of the longitudinal coordinate of the mixing zone, shear perturbations can propagate only a 
finite distance in the direction of the transverse coordinate. This causes the localization 
of the mixing zone in space. The analysis presented below confirms this conclusion, thus 
supplementing the results of [i]. 

Suppose a non-Newtonian fluid obeying the power law (1) moves in the direction of the 
x axis in the half space x < 0 with a velocity U~ = const for y > 0 and U2 = const for y < 0 
(Fig. i). For definiteness we assume UI > U2. In the half space x > 0 the two streams are 
brought into contact and the flow in the mixing zone is described by the boundary layer equa- 
tions of power-law flulds [4] 

Ou 0 ( ou ~ Ou + v - -  = a - -  
u o---~ oy Oy Oy / 

Ou Ov 
~ 0 .  

Ox Oy 

(2) 

Here u(x, y) and v(x, y) are the longitudinal and transverse components of the velocity 
of the fluid and a E k/p, where 0 is its density. It was shown in [i] that the problem can 
be treated more generally by taking different values of k and p for the fluids in the two 
streams, but the spatial localization of the mixing zone for dilatant fluids can be estab- 
lished without this complication. 

The function u(x, y) must obviously satisfy the conditions 

u (x, oo) = U,, u (x, -- oo) = U.~. (3) 
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Fig. 1 

By introducing the stream function 

(x, y) = (aU~"-~ x)' ,"l"+~ ~(rl),  
(4) 

u (x, y) = U,qo' 01), o (x, y) = (aU~"-' x-")':c"+'~ ['lq~' (q) - -  ~ (q)l 

(primes denote  differentiation with r e spec t  to the self-slmilar variable) 

y( U~ -n i'I(,+') 'q = \ - - & ~ -  / --rio, 11o --const), 

problem (2), (3) is reduced to the following: 

(5) 

n (,, + i) (C)"-'~"' + ~' = 0, 

~' (-- oo) = A ---- Uz:U,, 

~" (oo) = I. 

(6) 

(7) 

(8) 

Conditions (7) and (8) can be supplemented by the condition 

(0) = O, (9) 

corresponding to the fact that the stream function is zero on the boundary between the two 
streams in the half space x > O. It follows from (5) that the equation of the boundary is 
given by the expression 

= ~0 (X) ~ ~0 (aU~--2X) ' /(n+l),  (10) 

which contains the unknown constant ~o whose determination requires special consideration. 

The solution of problem (6)-(9) determines the functions q (q), ~'(q)(--oo<~<oo) and, in 
particular, the value 

~' (0) = Z, A < L < I .  (11) 

If I is assumed given, the solution of the original problem (6)-(9) for 0-< q < | is equival- 
ent to the solution of a problem in which, in contrast with problem (6)-(9), boundary condi- 
tion (ii) is specified instead of boundary condition (7). We call (6), (8), (9), (ii) a 
subsidiary problem. 

For n # 1 the left-hand side of Eq. (6) can be written as the product of two operators: 

{/[q~]}{M[q~]} ~ J n ( n @ l )  [(q'")"-l]'-i" q3}{q~"}. It seems plausible that the solution of the subsidiary 
{ n - - I  

l 

problem should be obtained as a solution of the equation 
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L [%c1 = 0 (12) 

with boundary conditions (8), (9), (ii). This is actually so for n < i, but is not true for 
n �9 i. To prove this we start from physically obvious concepts of the properties of tangen- 
tial shear stresses in the mixing zone of parallel streams. In accordance with these con- 
cepts we can assume that F"(~) is bounded and positive for any finite value of q (0 < n < | 

0 < ~" (~) < N < oo, N - con~. (13) 

It follows from Eq. (13) and boundary conditions (8) and ~ii) that for any Q �9 0 there exists 
an nQ �9 0 such that 

(~ > ~!Q) > Q (14) 

and, in addition, 

~" (oo) = 0. (15) 

By integrating Eq. (12) with n �9 1 from 0 to q and using (14) it can be shown that for 
q > qQ the inequality 

n n 

[r '~-'- Ir ~0)l "-~ n(l +n) ~dn <--n (l-:n) qdT] < n(l ~- n) (q-- ~e)' (16) 
0 nQ 

holds for all values of nQ < n < ~ for which Eq. (12) is valid. It follows from (13) and 
(15) that as q -~ ~ inequality (16) is meaningless. Thus, for n > 1 the solution of the sub- 
sidiary problem cannot be obtained as a solution of problem (12), (8), (9), (ii). 

We note that Eq. (6) is satisfied formally if 

M [~] = 0. (17) 

However, its solution 

~('1) = A + Brh A, B--const  (18) 

cannot simultaneously satisfy the three conditions (8), (9), (ii). Therefore, the solution 
of the subsidiary problem for n > 1 cannot be obtained as a solution of problem (17), (8), 
(9), (11). 

It can, however, be constructed as a generalized solution with different analytical 
descriptions in the domain 0 < q < =: 

~i(~) for ~,~n<oo, (19) 

where qo(q) satisfies Eq. (12), and ~,(n) satisfies (17). It is essential that L[~,] # 0 
for ~, ~ q < ~ and M[~o] # 0 for 0 ~ q _< ql. 

Before indicating the corresponding problems for determining ~o(~) and ~,(q), we note 
that it follows from the original Eq. (6) that q, q', and ~" are continuous for all ~ includ- 
ing q = qa, which is the quantity being sought. 

The function ~,(q) defined by (18) must satisfy (8), and therefore in (18) the constant 
B = B, ~ i. The constant A 5 A, must be found from the condition for the continuity of ~ at 
q = q~: 

F, (q,) = % (n,)- (20) 

We now formulate the problem of determining ~ o. 

It is clear that it must satisfy (9) and (ii) for q = 0, and the following ~ro condi- 
tions at q = q~: 

90 (.,) = I, % 010 ~ 0, (21) 
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which follow from the continuity of ~'(n) and ~"(n) at n = nx: ~o'(n,) = ~,'(n,), ~o"(n,) = 
~,"(q,). The four conditions (9), (ii), (21), and (12) define the problem. Its solution 
requires finding ~o (n) (19) and the boundary n = n,. 

By using (4) and (5), expressions can be written down for the longitudinal and trans- 
verse velocity components u(x, y) and v(x, y) for x �9 0 and y >__ y,(x), where 

y, (x) = (no + n,) (aU?Jx) '/~"+'~, n > I, 

d e t e r m i n e s  t h e  uppe r  b o u n d a r y  o f  t h e  m ix in g  zone  o f  t h e  s t r e a m s  ( F i g .  1 ) .  
a r e  

u(x, y ) =  UI, v(x, y )=- -A l (aU~"- Ix - - " )  I'C"+1~, n> 1. 

(22) 

These expressions 

(23) 

A similar procedure for n > i and negative values of q shows that a surface 

9a (x) = (no + II~ (aUT-2x) ''c"+'', n > 1. (24) 

must exist which bounds the mixing zone of the streams from below. For x �9 0 and y~y2(x) 

U (X, g) = U2, V (X, 9) = -- A2 (aU~n-Ix--n) l''(a+l), n > I, (25) 

where Aa is the value of the constant A in solution (18) for -~ < n < ha. 
I 

Thus, for dllatant fluids (n �9 i) the solution of the original problem (6)-(9) has dlf- 
ferent analytical forms for various values of n: 

,~ ( ,1 )  = 

ch (q) for lh ~ II < oo 

q% (q) for ~12 ~ il ~ lh 
q'2 (ri) for -- oo < il ~ lb. 

(26) 

Thls is related to the spatial localization of the mixing zone of the two streams of dilatant 
fluids. 

The spatial localization of the mixing zone for streams of dllatant fluids and the 
existence of the surfaces yx(x) (22) and Y2 (x) (24) alters the problem of determining the 
boundary of the two streams yo(x) (i0) for n > i. The Karman condition [5] can be used to 
determine yo(x). This corresponds to the vanishing of the transverse momentum in the mixing 
zone of the streams. As was shown in [i] the Karman condition for n < i can be written in 
the form 

Uiv (x, oo) " U2v (x, - -  oo) = 0. (27) 

I t  was e r r o n e o u s l y  s t a t e d  i n  [1]  t h a t  c o n d i t i o n  (27) h o l d s  f o r  n > 1 a l s o .  A c t u a l l y ,  b e c a u s e  
of the spatial localization of the mixing zone the condition for n �9 i must be written in 
the form 

U~v [x, y, (x)] yt(x) + U2v [x, y2 (x)l y2(x) = O, (28) 

or, transforming to the self-simllar variable n (5) and using (23)-(25), in the form 

UtA l (rl o + Vh) ~- Uo.Az(qo "+ "qz) = O. (29) 

By using condition (29) the last unknown no of the original problem can be determined, and 
the solution is complete. 

It is impossible to write analytical expressions for ~(n) (26) and the values of no, 
nx, and no for arbitrary n �9 1 because there is no analytical expression for the solution of 
Eq. (12) except for the special case n ffi 2. It is appropriate to illustrate the general 
scheme for obtaining the expressions for ~(q) (26) in thls special case. 

For n ffi 2 the problem of determining ~(~) (26) has the form 

~ o ~ " + o a g o = 0 ,  o'~= 1/6, 

~o (0) = 0, ~0 (~,) = l ,  ~ (~2) - A, ( 3 0 )  

~ ;  (~,) - -  ~o (no) = 0. 
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The solution of Eq. (30) which satisfies the first three conditions is 

% (q) = C, exp [-- foq] - -  e ~'r2 C~ cos coq -i- C3 sin (Orl , 

C1 = - -  C.:, C., - -  Az C 3 A3 
A A 

~, - -  exp [:3~ ,.,,,-= '~:/ 2] sin [ ~ ,.o ( , , .~-  r,,) - - e x p  [3,o,~,/21 cos >.~ 

:< . 6 2 ~oq, 4.- exp[3~oq2."2l cos , 6 2 ~q:: ' 

I[ 1 A., ~- -- exp [~o Oh 3qz'2)] cos ~, 6 2 C~ - -  

- -  Aexp  [~o(q~ ' 3:h~2)] cos 6 2 ' 

A3 _= leo [ A  exp [ - -  toq2l - -  exp [ - -  (oqd .'- A exp [(o (q2 + 3,h,'2)] sin • 

i ~  ] ",~ , o , h ) _ e x D [ o ~ ( , h _ L _ 3 q o / 2 ) ] s i n (  .~ 1'"3- ~o~h) ]" 
:": 6 2 �9 - 6 

Here to is the real root of the equation 6~ s ffi i. 

Two transcendental equations for qi (i = 1, 2) can be obtained from the last two of 
equations (30) : 

I (" --~ C, exp[--co,l i]  +exp[(orh /2]  C2 sin 6 ~ 2 (oqi -i- C3cos 6 ~ 2 

The expressions for ~i(n), i ~ i, 2 (26) are found as solutions of the problem 

~ = 0 ,  q ~ ( q , ) = % ( B ~ ) ,  ~ ; ( o o ) =  1, q : . : ( - - o o ) = A .  

By solving (31) we have 

(3l) 

~.i ('1) = Ai  -',- B iq ,  i = I, 2, 

Al = ~.o 010 - -  ~1,, A2 --- % (11.-.) - -  A,I.,, 

B l =  1, B._,=A. 

The last unknown n. is found from (29). 

In conclusion, we note that the spatial localization of shear perturbations in dilatant 
flulds can also be observed in other boundary layer theory problems of media whose theologic- 
al behavior is described by (i). 
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